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TWO-DIMENSIONAL LAMINAR BOUNDARY LAYER IN FLOW
OF THERMODYNAMICALLY EQUILIBRATED WATER VAPOR

R. A, Rakhimzyanov and V., G. Zharinov UDC 533.6.01

This paper examines the boundary problem of a laminar boundary layer in flow of thermodynami-
cally equilibrated water vapor. Anapproximate method of solution is proposed, based on an approx-
imation for the density and the coefficient of dynamic viscosity across the layer,

At present only experimental investigations are known of flow in a boundary layer formed in a nozzle
with motion of water vapor [1, 2]. In particular, it is noted that the boundary layer in a Laval nozzle, when
it has spontaneous condensation, when the liquid phase is finally dispersed, consists of two sublayers: an
upper vapor-drop layer and a lower heated vapor layer (adjacent to the wall),

Below we present results of a theoretical investigation of flow in a two-dimensional laminar boundary
layer with motion of water vapor along a solid impermeable surface.

Statement of the Problem. For the water vapor we assume that the liquid phase is in a finely dispersed
state and that the velocities of the phases are the same: the thermodynamic equilibrium of the phases is not
perturbed, and the temperature and pressure obey the vapor pressure curve. With these assumptions water
vapor can be regarded as some kind of imperfect gas,

In considering the equations of motion and continuity of the laminar boundary layer, derived, e.g., in
[3], no assumptions of any kind are made concerning the gas being perfect, Therefore, these equations will
be valid in our case.

Having made the transformations usually applied in boundary layer theory, we obtain the energy equa-
tion for a two-dimensional steady-state laminar boundary layer inan imperfect gas

oh oh dp | Ou )3 d ( 07')
U — — U — =u—— —p | — --— [A—1}.
ox dy dx ( dy dy dy

To determine the dynamic viscosity of a two-phase medium we use the "Einstein correction" {3]:
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where m is the volume fraction of the liquid phase, equal tom = [1+(z/(1 — z))Vv/Vl]"'. Since Vy >» Vi for
flows with a large degree of dryness we obtain the result that m < 1 and 4  uy. For example, for water
vapor with z = 0.7, the error at T = 373°K is 0.07%, and at T=273K it is 0,0005%

Later we assume that u = uy, and that the dynamic viscosity of the vapor phase is a linear function of
temperature,

The temperature and pressure of water vapor in thermodynamic equilibrium are connected by the single-
valued relation p = f(T). Since 3T/8y = 0 for a boundary layer, in the water vapor case 8T/8y = 0.
Hence it follows that T = Te(x) and g = pe(x).

For a high degree of dryness (1—z)V; < zVy, and the Clapeyron—Clausius equation reduces to the form

dp
=) dT

where h;(T) is a known function of temperature.

In solving the problem of a laminar boundary layer in flow of water vapor in the general case, one must
take into account that a region of single-phase state (heated vapor) is formed near a solid surface [1, 2]. For
a heated vapor we assume a model of a perfect gas with linear viscosity law,

Taking this into account, we write the systems of equations for the regions of moistand heated vapor, re-
spectively:

Ou ou dp ®u  d(pu) , d(pv)
e - = L -_+ _‘ZO’
P TP % ax TPor Tax T oy o
oh oh dp au)z dp
o2 o 9 N h—hy=T . o (D),
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plh—h)= —"= p, k=chtp,

where h,, ¢, ¢ are constants,

We can write the boundary conditions: aty = 0u =v =0, h=hp(x) or 8h/dy = 0; for y = © u = ug(x), h =
he(x). The second equation for the enthalpy corresponds to the case where the surface is thermally insulated,

To these boundary conditions one must add the condition that the equation which we denote by y = yp,(x)
must be matched at the boundary; at y = yb(x) uy = u,, (Bu/dy); = @wdy),, v4 = v, hy = h, = hy, subscripts 1
and 2 denote values on the water vapor and heated vapor sides, respectively. The enthalpy hy at the boundary
of the regions corresponds to the enthalpy at the saturation line and is a known function of T,.

The initial conditions are: for x = xg u = uy(y), h = hy(y).

From the condition hy(yhy) = hy we determine the initial ordinate of the boundary of the regions yp, =
¥b(Xe) and the values of the quantities required in it, '

We note that from the second, third, and fourth equations of system (1) we can obtain the following final
relation for the enthalpy:

du \2 dp :6u . Ov . aT T azp !
h = o, (h,—h Uy _rdp 0w 0N um ) 2L EpA . 3
ee (e ‘){[”e(ay) dTdeTdy)}/ul(T) dx I (T) dT? ! @

From what has been said above, it can be seen that there is considerable difficulty in solving the laminar
boundary layer with flow of water vapor. It should be noted that the boundary of the regions and the values of
the parameters are unknown and are determined during the solution.
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Approximate Method of Solution. It follows from the density expression for water vapor [p = 1/sz, 1-
z)Vj«zVy] that the variation along an isobar is determined by the dryness level z, since for p = const Vy =
const, In the boundary layer ze = z = 1. For large values of zg (=0.8) the density varies only a little across
the boundary layer in the water vapor region.

For the heated vapor region it follows from the Clapeyron—Mendeleev equation that the density variation
is determined as a function of temperature. If the parameters for stagnation of the outer flow are near the
top boundary curve and there is no strong heating of the surface, then the variation of temperature, and there-
fore of density, in the heated vapor region will be very little.

To sum up, we can say that for these cases (e.g., for the working nozzles of water vapor ejector pumps
and for steam turbines) we can neglect density variation across the boundary layer, This refers also to the
dynamic viscosity coefficient, which varies only in the heated vapor region for p = const.

To obtain an approximate solution, we assume the density and the dynamic viscosity coefficient to be
constant and equal to unity across the boundary layer for both regions o = (1 + g1)pg, #= (L + €y)he (€1, €, are
constant and quite small compared with unity). Then the equations of motion and continuity for the two regions
take the form

ou .'_vﬂ =uu';veaaz__u, a(pl’u) + a(pev) :0' a = 1_82

“or dy e dy* dx dy 1+e 0]

To this system of equations we apply the transformation

;,—_— a f\-" (c) p‘;‘ (g) dg’ 5 =0, (,\) Y, u = u, 17:.

Xo
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- —— Y,
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(the primes denote derivatives with respect to x). We obtain equations which correspond completely to the
equations of two-dimensional flow of an incompressible liquid:

i —-0u - du, Fu ou , d
U—— — UV —= = U, _'i'——_—,——:‘r"—_=0. (5)
dx dy dx 0yt Ox dy
The boundary conditions are:
forj=0 i=0=0, for j=oo =i, for £=0 =iy (F). (8)

To solve the boundary problem of Egs. (5) and (6) we can use the well-known methods developed for an incom-
pressible liquid [3-6].

After solving the problem we find the enthalpy distribution in the boundary layer.
For the enthalpy in the water vapor region we can use Eq. (3). If we assume for the saturated liquid that

the heat capacity c; alongthe boundary curve is constant, and use the second equation of Eq. (4), we can sim-
plify Eq. (3) after some transformations:

v 1

Cl u
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% . ] ! (x, y) Y=y

Now we return to the heated vapor region., Using the equations of continuity and state we can write the
energy equation of system (2) in the form

Lo S (L) (B 2w .
Pr dy '\ oy . dy z—1\ 0x dy z—1 dx

Using the above approximation for the density and coefficient of dynamic viscosity, from Eq. (7) we obtain

ah du \?] p d ¢ p
—=PrlA(x)u— 2L = R(x, y). X) = .
3y ’[ () (ayH RE o AW = e (™% ) ®

We now present the results of integrating Eq. (8), allowing for the matching conditions:

a) for a thermally insulated surface (for y = 0 8h/dy = 0)
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by

h=hy—{ | R(x. y)dydy, 0<y<yy;
0

Ry

b) for a given enthalpy at the wall [for y = 0 h = hp(x)]

Yy

b ¥ Y
h=hps L [hv—hT—j | Rex y)dydy].;j jR(x, ) dydy,
i 0 o0

Y
Yp
0<y <y,
For both cases yp is found from the equation F(x, yp) = by.

For applications of the boundary layer equation it proves very efficient to use similarity solutions. For
system of equations (4) we analyze the distribution laws for parameters of the external flow, where the equa-
tions and partial derivatives reduce to ordinary differential equations, i.e,, similarity exists,

From the continuity equations peu = 8)/dy, pev = ~3y/0x, We seek a stream function ¢ in the form y =
k(x)peuep @, where n = y/k(x), and k(x) is an arbitrary function whose form will be determined later. Carrying
out the transformation, we have

XX x o . x ' ! ’

® Tv—il wff—i—)(l~¢2)»-—-0, ¢(0)=¢ (0)=0, ¢ (0)=1. (9)
Here ¢'(7) = We, Y(X) = (koeue)' kKlie, 3(x) = uékz/ve, and the primes indicate derivatives with respect to the
corresponding arguments.

The differential equation will be an ordinary one if y(x) = const, f(x) = const. From the conditions y(x) =
const, B(x) = const we obtain the form of the function k(x) and the law for variation of the outer flow parameters
in the implicit form

_‘._ —1 2 (—l— —l)

a o
k (x) —_ __Ci_u_e—.~ , X=20 Li'_.

Pe et

where o = 8/y; ¢;, ¢;, and c; are constants,

In Eq, (9) we transformed to the new variables ¥ =vy/a ¢, £ =Vy/an., We obtain
Q"+ DD - (1— DY) =0, ®@O0)=ad 0)=0, D (x0)=1. 10)
Equation (10) has been investigated by several authors over a wide range of variation of ¢, and tables of values

of ¥¢) = whe ¢ = yWul/avea) are presented, e.g., in [3].

We will consider the boundary layer on a semi-infinite flat plate in a homogeneous flow (dp/dx = 0). The
boundary problem for Eq. (4) (without the initial condition) in this case reduces to the Blasius boundary problem
concerning the boundary layer on a flat plate in flow of an incompressible liquid

2(plll _1_ (Pcp" - 0’ (P(O) — (p' (O) = 0, (p’ (w) == ( - == (p’ (n)'

ue
i ’ uc
n=4y l/ xv,a )

Following elementary transformations and integration of the energy equation we obtain the enthalpy dis~
tribution in the water vapor region

(11)

and its solution is derived, e.g., in [4].

w0

© g h u?
Ot =142 | £ an, nu, B = v ot az)
n

@ h, n,

The boundary of the region is determined from the equation S (¢*%/Adn=(hy/he—1)/27,
"b
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Fig. 1. The enthalpy distribution
in the boundary layer of water vapor
on a thermally insulated flat plate,
and the dimensionless thickness of
the enthalpy layer 6h as a function of
Mach number Mg,

For the heated vapor we assume that the Prandtl number is unity (this is valid, e.g., for water vapor
over a wide range of variation of parameters [7]), and then there is evidently a particular integral of the
energy equation {3)

2
- —%— =bu—b, o O() =1 —ne — —;—- ¢'2, nb>n>0.

The constants ny, n, (or by, b,) are determined from the matching condition and the boundary condition at the
wall.

Figure 1 shows results of calculating the enthalpy in the boundary layer in flow of water vapor along a
thermally insulated flat plate for various values of Mach number M, and constant stagnation parameters of the
external flow pg = 5 Bar, T; = 473.15°K. The same figure shows the dimensionless thickness of the enthalpy
layer 4y, as a function of Mach number. The thickness of the enthalpy layer is assumed to be the value where
the difference in the enthalpy from that of the external flow is 1%.

The dimensionless thickness of the dynamic layer, determined from the condition that the velocity should
differ by 1% from ug, is 5.0 [4]. It is clear that the enthalpy layer thickness is less than the dynamic layer
thickness.

In Eq. (12) there is the improper integral of the form
« e
j —q— dn = E (b). 13)
b

We will show that it converges for b > 0, We write Eq, (11) in the form de"/p" = (1/2)¢dn, whence In(e"/¢"

n
(b)]= —(1/2) \ ¢dn. Usingthe last relation and convertingin the integral to the new variable ¢(dn = de/p) and
b

const, Now E(b) =r j a/

h

i

taking into account that ¢' = 1, we obtain the estimate that ¢" = rexp (—¢%4), r

x ac

bmin ¢';s From the con-
=

n .

@exp(—¢t/2)dn=r j 1/p@exp(—¢*/2)dg < (r/¢'y) j (1/@)exp(— @?/2)dg, o
g G(b)

vergence of the last integral, which is easy to show, it follows that the integral of Eq. (13) converges.

NOTATION
uand v are the longitudinal and transverse velocity components;
xand y are the longitudinal and transverse coordinates;

fel is the density;



p is the pressure;

T is the temperature;

h is the enthalpy;

v is the specific volume;

Pr is the Prandtl number;

z is the dryness level;

® is the adiabatic exponent of the heated vapor;

A, H, ¥ are the coefficients of thermal conductivity, dynamic and kinematic viscosity, respectively,

The subscripts / and v refer, respectively, to parameters of the liquid and vapor phase; e refers to parameters
of the external flow,
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DISCHARGE AND DYNAMIC CHARACTERISTICS OF BOILING
WATER IN LAVAL NOZZLES

R. S. Gorelik, M, A. Koronkevich, UDC 532.528:536.24
‘N. S. Safarova, and I. R. Shreiber

The criterial processing of experimental results, obtained by studying the discharge of hot water
into the atmosphere through a Laval nozzle, is proposed. The initial parameters of the water
were varied over the range p, = 4.9-17.6 bar and t; = 119-204°C,

The effect is investigated in this paper of the initial parameters of hot water, py and t; [t, > ts(pp)}, where
t5(pp) is the saturation temperature at the temperature of the surrounding medium, on the discharge charac-
teristics, the mean-mass efflux velocities, and pressures for nozzles of specified geometry.

The experiments were conducted in a facility representing a hydraulic circuit, including a high-pressure
tank, the working section — the nozzle, and a catcher vessel. In order to produce water with specified initial
parameters, a number of anciliary devices were provided: a heat-exchanger; electric heater; a compressed
air supply line; and pumps,

The experiments were carried out with water that had not undergone preliminary deaeration and purifica-
tion; however, during heating up in the closed volume, a periodic pressure "scouring" was carried out, which
led to a reduction of the amount of gas in the water. The water obtained was underheated by 1-2° before the
saturation line. Greater underheatings were achieved by the addition of compressed air,

During the experiment, the initial temperature of the water (tg), the initial pressure (py), the static
pressure along the nozzle (p;), the water flow rate per second (G), and the reactive thrust (R) were measured.
From the measured values of G, R, and py, the mean flow velocity at the outlet was calculated by the formula
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